
Electron transfer from a carbon nanotube into vacuum under high electric fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 195302

(http://iopscience.iop.org/0953-8984/21/19/195302)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 19:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 195302 (9pp) doi:10.1088/0953-8984/21/19/195302

Electron transfer from a carbon nanotube
into vacuum under high electric fields
L D Filip, R C Smith, J D Carey and S R P Silva

Nano Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford,
Surrey GU2 7XH, UK

E-mail: l.filip@surrey.ac.uk

Received 3 November 2008, in final form 17 February 2009
Published 7 April 2009
Online at stacks.iop.org/JPhysCM/21/195302

Abstract
The transfer of an electron from a carbon nanotube (CNT) tip into vacuum under a high electric
field is considered beyond the usual one-dimensional semi-classical approach. A model of the
potential energy outside the CNT cap is proposed in order to show the importance of the
intrinsic CNT parameters such as radius, length and vacuum barrier height. This model also
takes into account set-up parameters such as the shape of the anode and the anode-to-cathode
distance, which are generically portable to any modelling study of electron emission from a tip
emitter. Results obtained within our model compare well to experimental data. Moreover, in
contrast to the usual one-dimensional Wentzel–Kramers–Brillouin description, our model
retains the ability to explain non-standard features of the process of electron field emission from
CNTs that arise as a result of the quantum behaviour of electrons on the surface of the CNT.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The field emission (FE) phenomenon was observed by
Wood [1] more than one hundred years ago in his quest
to produce x-rays more efficiently. The observation of
the ‘brilliant blue arcs’ was at the time an unexpected
outcome of the investigation. Thirty years later, scientific
and technological developments focused the research towards
the use of ‘jets of electrons’ exiting a metal surface when
a strong electric field is applied. In this context, Fowler
and Nordheim developed a theory to explain and understand
the conditions in which FE can successfully be reproduced
and harnessed [2]. The newly developed theory made
use of the existing one-dimensional (1D) Wentzel–Kramers–
Brillouin (WKB) description of the tunnelling phenomena and
produced an exceptionally simple formula [2] for the emission
current from a grounded cathode as a function of the applied
potential (or as is most commonly used, the applied electric
field) on the opposing anode. Technological advances at the
end of the 20th century created yet another twist in the rapidly
advancing research area on field emission. Creating efficient
electron sources such as the Spindt tip arrays [3] and the
discovery of large area techniques for depositing materials
such as diamond and diamond-like carbon [4–7] paved the
way for large area electronic applications. The unprecedented

miniaturization of the electron sources and the discovery of
new materials such as carbon nanotubes [8] (CNTs) generated
new applications for field emission. While still preserving the
exponential shape of the current–voltage (I –V ) characteristics,
which is the hallmark of tunnelling emission, some of the
experiments performed on CNTs cannot be fully described
within the Fowler–Nordheim (FN) theory. These include
the observation of structured peaks in the measured emitted
electron energy spectra [9–15] and the observation of ring
shaped image patterns during emission [16–19] on individual
CNTs as well as arrays of nanotubes.

The Fowler–Nordheim (FN) theory is a 1D description
of the tunnelling process which is at the core of the field
emission phenomenon. This theory was originally developed
under assumptions, imposed on the emitting surface, of which
at least two fail to be fulfilled in experiments [9–19] under
realistic and practical conditions. The first approximation
addresses the roughness of the emitting surface, which in the
theory has to be perfectly flat and smooth. Real surfaces
do not satisfy this assumption. In the case of a CNT the
assumption is clearly violated as these structures are long
cylinders usually terminated with a hemispherical cap of C
atoms or possess a jagged edge of terminated C bonds for an
uncapped CNT. The second approximation introduced in the
FN theory requires that two of the geometric dimensions of the
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emissive material extend indefinitely in the plane perpendicular
to the tunnelling direction. By a simple kinetic argument
the number of electrons incident on the potential barrier at
the vacuum interface per unit time (or the so-called supply
function) may be easily evaluated and by combining it with
the WKB tunnelling probability, the FE current density can be
easily derived. Such an approach proved to be very convenient
for a wide range of metallic and semiconducting emitters,
including the Spindt cathodes [3]. However, in the case of
CNTs all the transverse geometric dimensions are shrunk to a
nanometre scale, so that the subsequent quantum confinement
effects can no longer be disregarded.

The main purpose of this article is the study of the electron
transfer into vacuum exploring a quasi-free electron model.
The CNT will be assumed to be a two-dimensional (2D)
cylindrical manifold terminated smoothly with a hemisphere of
the same radius. The electrons involved in the charge transport
become 2D quasi-free objects bound to the surface of the CNT
by a constant potential energy −W0. The electronic states
can then be found by solving the Schrödinger equation on the
2D manifold [20, 21] and the related electron densities on the
CNT can be derived by assuming a Fermi–Dirac distribution
over states. By combining these results with the standard
1D WKB approximation for the FE process, it was shown
that the unusual experimental findings stated above are due
to the quantization of the electron energy on the CNT [21].
Therefore, a more complete description of the FE process,
from CNTs requires the consideration of the confinement
quantization and reduced dimensionality when discussing the
electron transfer into vacuum. For this reason, in order to go
beyond the classical kinetic-plus-WKB description, one must
rely on a more general definition for the emitted current [22]:

I (V ) = e
∑

available states

f (Estate)Jstate(Estate, V ), (1)

where e is the elementary charge and

f (Estate) = 2

[
1 + exp

(
Estate

kBT

)]−1

(2)

is the Fermi–Dirac distribution function corrected for spin
degeneracy, kB is Boltzmann’s constant and T is the overall
temperature of the emitter. Jstate(Estate, V ) is the total
outgoing radial probability current of the electronic states in
vacuum [23], which is the cornerstone of this approach. To
compute the total outgoing radial probability current one has to
describe the electron quantum dynamics in the 3D vacuum by
accurately connecting it to the 2D behaviour on the CNT. The
following sections introduce the framework for the proposed
model. In section 2 a potential energy is defined in the space
between the CNT cap and the anode, followed by the solutions
of the Schrödinger equation on the 2D manifold and in the 3D
vacuum in section 3. Section 4 introduces the new proposed
emission current formula, while the results are discussed in
section 5.

2. Defining the potential energy

In order to address the quantum mechanical problem of the
electron transfer from the CNT into vacuum, the potential

Figure 1. Sketch of the electrostatic model used to obtain the
potential energy outside the CNT’s cap (figure not drawn to scale).

energy in the studied system has to be defined. It has
already been assumed that the electrons are bound to the 2D
surface of the CNT by a constant potential energy −W0. The
situation in vacuum however is more complicated to be easily
described. One needs to find the potential energy in vacuum
between the grounded CNT and a positively charged anode
situated at some distance away. This electrostatic problem
has been investigated through a number of methods in the
literature [24–32]. However, due to its unexpected complexity,
there is no definitive solution that could be used to describe the
potential energy in the Schrödinger equation in vacuum. The
result for the electrostatic problem to be presented in this work
is to be viewed as a starting point for the more general problem
of quantum tunnelling from nano-scale objects. More precisely
the field emission model constructed using the potential energy
obtained below is not dependent on a particular solution of
the electrostatic problem but on one’s ability to solve the 3D
Schrödinger equation in vacuum.

The usual set-up for theoretical studies in the literature
assumes an infinite planar anode thus differing slightly from
the experimental reality where a spherical probe-anode is more
commonly used for measurements of FE from single tips.
To account for this practical configuration an electrostatic
model has been developed in the present study based on
the image charge method. The schematic of the proposed
set-up is presented in figure 1. The anode is taken as a
conductive sphere of radius Ra placed on the CNT axis, while
the CNT cap is simplified to a grounded conducting sphere
of radius r0 (Ra � r0), placed at a distance d away from
the anode. Direct application of the image charge method to
the grounded emitter on an infinite conductive plane facing
an anode (regardless the shape) at a fixed positive voltage V
would prove quite difficult. However, using information from
the literature [30, 32] we have reversed the problem in the
following manner: the cathode will be considered as grounded
while the emitter connected to the cathode plane maintained at
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a constant potential V . Once the electric field is obtained in the
‘reversed’ problem, the real electric field will simply have an
opposite orientation:

�Edirect
P = − �E inverse

P = ∇r V inverse
P . (3)

The charge distribution corresponding to the inversed
configuration can be approximately replaced by a sequence of
three collinear charges (figure 1). The charge at the origin O
will generate the potential V on the emitter sphere:

qO = V r04πε0 (4)

and has an image qN in the anode sphere:

qN = −q0
Ra

d + Ra
, (5)

at the point N located R2
a

d+Ra
away from its centre. In order to

obtain a more accurate description of the charge distribution on
the emitter’s surface, an image of qN with respect to this surface
is also considered. The charge will be located at a point M at

the distance r2
0
d

d+Ra
d+2Ra

away from O with:

qM = −qN
r0

d

d + Ra

d + 2Ra
. (6)

The total potential at some arbitrary point P in vacuum
at a distance r from the origin will be the superposition of
potentials generated by the three individual charges. Taking
into account that the FE process is highly dependent on the
electric field strength in the first few nanometres outside the
emitter cap, the formula for the electric potential must be
accurate for distances r comparable to the radius r0 of the
emitter. By keeping only the terms of the second order in r/Ra,
r0/Ra, r/d and r0/d , the potential in the reversed problem can
be obtained in the following form:

V inverse
P (r, θ) = V

r0

r

(
1 + r0

d

Ra

d + 2Ra

)
+ V

r 2
0

d2

Ra(d + Ra)

(d + 2Ra)
2

×
(

r 2
0

r 2
− r

r0

)
cos θ − V

r0

d

Ra

d + 2Ra
.

(7)

The electric field in the ‘direct’ problem can now be
retrieved through differentiation of equation (7) and by the use
of equation (3). The corresponding potential energy in the
neighbourhood close to the cathode follows from integration of
the direct electric field along a radial path. In order to account
for the non-electrostatic potential energy discontinuity at the
CNT–vacuum interface it is required that the potential energy
equals the vacuum barrier height χ of the CNT at r = r0,
for any value of the angle θ (see [27, 28, 33]). Thus, the
potential energy formula to be used in the present approach
of the electron tunnelling from a CNT into vacuum is given by:

W (r, θ ) = χ + eV

(
1 + r0

d

Ra

d + Ra

) (r0

r
− 1

)

− eV
r 2

0

d2

Ra (d + Ra)

(d + 2Ra)
2

(
r

r0
− r 2

0

r 2

)
cos θ. (8)

While rather involved, the above model still lacks the
high sophistication of surface potentials barriers constructed
for metals [34–36], which were backed by a substantial amount
of experimental results. For the CNT case, where the study
of individual tips is extremely difficult, not even the metallic
character is always obvious. Therefore, while opened for
further refinements, our model presently embeds other various
contributions to the potential energy in the additive parameter
χ . The extraction force Fextr(θ) on the electron at the surface
of the emitter can be evaluated by radial differentiation of
equation (8) at r = r0, which gives:

Fextr(θ) = eV

r0

(
1 + r0

d

Ra

d + 2Ra

)

+ 3
eV

d

r0

d

Ra (d + Ra)

(d + 2Ra)
2

cos θ. (9)

One may note in equation (9) that the dependence on the
elevation angle θ comes from a term that is essentially of the
order of (r0/d)2. This means that, unless the anode is very
close to the CNT’s tip, the angular dependence of the extraction
field may be negligible.

3. The quantum mechanical problem and solution of
the Schrödinger equation

In order to produce numerical results that can be compared
with existing measurement data, one should model the specific
experimental set-up. As mentioned in the previous sections,
the CNT is approximated by a strict 2D manifold where
electrons behave as quasi-free particles. The manifold consists
of a cylindrical sheet of length L and radius r0 terminated
smoothly by a hemispherical cap of the same diameter. The
CNT’s symmetry axis serves as the z-axis of the system
pointing towards the vacuum and originating in the centre of
the hemisphere. The position parameters on the CNT sheet
are the angles of azimuth ϕ and elevation θ measured from
the z-axis. The requirement of cylindrical symmetry for the
electronic wavefunction is equivalent to imposing a restriction
on the azimuth degree of freedom, such that the quasi-free
electrons are confined in a one-dimensional (1D) potential
energy well. For computational convenience, the origin of the
energy scale is taken at the chemical potential of the quasi-
free electron gas. Denoting by χ the CNT–vacuum barrier
height and by W0 the (position-independent) [37] energy of
the bottom of the well, the total depth of the well appears to
be χ − W0 (see figure 2). Thus, the quantity |W0| equals the
chemical potential of the quasi-free electron gas as measured
from the bottom of the well. Using this framework, the solution
of the time independent Schrödinger equation on the CNT
manifold has been obtained in [21] and takes the form:

�2D
l,m(θ, ϕ) = αl,m	m(ϕ)Pl,m(cos θ), (10)

where Pl,m(cos θ) represents the associated Legendre functions
normalized in the interval [0,1] [38]. The indices l =
0,∞ and m = −l, l are integers quantifying the electronic
states on the CNT. The parameter αl,m is obtained from the
quantum mechanical connection requirements at the interface
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Figure 2. Potential energy diagram in vacuum for the 0 V applied on
the anode case (black line) and 60 V applied (the red dashed line).

between the hemispherical cap and the cylindrical body and the
normalization condition on the entire CNT. As a result of these
requirements two different values for the parameter α emerge,
depending upon the parity of the integer l+m (for details on the
parameter α see [21]). The remaining symbol in equation (10)
is given by

	m(ϕ) = 1√
2π

eimϕ. (11)

Having defined the potential energy in the close
neighbourhood of the CNT tip in section 2, the tunnelling
problem can now be addressed. Usually, this is approached
by a 1D description, which is further oversimplified through
the WKB approximation. The common FN equation is derived
starting from such simplifying assumptions. In the present
study, the Schrödinger equation will be solved in the full
3D vacuum space and the solutions will be connected to the
corresponding solutions on the 2D CNT surface. Using the
spherical coordinate system we have the following equation for
the electron in the vacuum region:

− h̄2

2m0
∇2�vacuum(r, θ, ϕ) + W (r, θ )�vacuum (r, θ, ϕ)

= E�vacuum(r, θ, ϕ). (12)

The above equation accounts for the full dimensionality
of the vacuum electron. In the usual FN approaches, the
multi-dimensional aspect of the electrons appears only in the
statistics of the cathode’s energy levels [39] and is normally
described by a Fermi distribution.

One may attempt to solve equation (12) through the
method of separating the variables. However, while the
variable ϕ separates due to the cylindrical symmetry of the set-
up, variables r and θ remain coupled through equation (8). By
taking into account the observation at the end of the previous
section regarding the θ -dependence of the extraction field, a
further simplification can be applied to the potential energy:
as the angular dependence is confined in a separate (normally
very small) term of equation (8), it will be convenient to use
the expression of the potential energy with θ = 0. As will

be shown in the next section, this does not mean that the
current density is independent of the elevation angle. On the
contrary, the θ -dependence of the emerging current density is
quite consistent and comes from the corresponding variation of
the wavefunction in vacuum.

Having made the above approximation, equation (12)
separates into the angular and the radial part. Making use of
the spherical coordinate system, the solutions for the angular
equation are given by the spherical harmonics:

Yl,m(θ, ϕ) = 1√
2π

eimϕ

√
1

2l + 1

(l + m)!
(l − m)! Pl,m(cos θ)

ϕ ∈ [0, 2π], θ ∈
[
0,

π

2

]
. (13)

Since the potential energy in equation (8) is approximated
as independent on the value of the angle θ , the angular
momentum can be considered as conserved for the electron
when it shifts from the CNT into the vacuum region. Thus,
the solution given by equation (13) will have the same integer
index symbols l and m, as for the construction of the solution
on the CNT cap in equation (10). Moreover, the transition
of the electron from the CNT manifold into the vacuum is
considered as an elastic process [40]. Consequently, the
electron energy in the vacuum region will retain the same value
on the CNT given by [21]:

El = −W0 + h̄2

2m∗r 2
0

l(l + 1), (14)

where m∗ denotes the electron effective mass. The radial part
	(r) of the wavefunction can then be obtained through the
following substitution [23] u(r) = r	(r). This leads to the
following 1D Schrödinger-like equation:

− h̄2

2m0

d2u(r)

dr 2
+ Wl(r)u(r) = Elu(r), (15)

where

Wl(r) = W (r) + h̄2

2m0r 2
l(l + 1) (16)

is an effective potential energy in the radial Schrödinger-
like equation, and should not be confused with the real
potential energy of the electron computed in the 3D vacuum
region [23]. Analysing equations (8) and (16) reveals an almost
linear behaviour of the effective potential energy in the close
neighbourhood of the CNT cap as a function of the departure
r − r0 from the cap surface. An approximate solution in
terms of Airy functions [38] can be found for equation (15)
by expanding equation (16) in a power series around r = r0

and retaining only the linear terms to give:

Wl(r) = −Fl(r − r0) + χ + h̄2

2m0

l(l + 1)

r 2
0

, (17)

where

Fl = Fextr(0) + h̄2

m0

l(l + 1)

r 3
0

. (18)
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Using again the function change in equation (15) and the
standard substitution for the Airy functions equation:

ξl(r) = −
(

2m0

h̄2 F2
l

)1/3

[El − Wl(r)] , (19)

the following solution may be found for the radial equation:

	l(r) = 1

r
[al Ai (ξl(r)) + bl Bi(ξl(r))] , (20)

where al and bl are constants to be determined and Ai(x)

and Bi(x) are the Airy functions of the first and second kind,
respectively [38].

The complete solution of equation (12) for the vacuum
region near the CNT cap can now be written as

�3D
l,m(r, θ, ϕ) =

√
1

2l + 1

(l + m)!
(l − m)!

× 1

r
[al Ai(ξl(r)) + bl Bi(ξl(r))] 	m(ϕ)Pl,m(cos θ)

r ∈ [r0, d), θ ∈
[
0,

π

2

]
, ϕ ∈ [0, 2π]. (21)

To summarize, in the first three sections of this paper, a 2D
model for the CNT has been presented and the potential energy
(equation (8)) in the 3D vacuum has been obtained using the
image charge method. Using the method of separation of
the variables the Schrödinger equation has been successfully
solved after an approximation has been used on the potential
energy, equation (17) with the full solution in the 3D vacuum
given by equation (21). At this point the electron is defined
both on the 2D manifold representing the CNT and also in
the 3D vacuum outside the CNT cap. In order to address the
problem of the electron transfer from the CNT into vacuum
under the application an electric field, the two solutions need
to be connected at the interface between the two media where
the potential energy presents a discontinuity. It is in the
following section that this issue is addressed and ultimately the
FE current is obtained as an analytical formula.

4. The connection condition and the field emission
current

As a dynamic process, the extraction of electrons from a
material under the influence of a high electric field can be
regarded as unidirectional, i.e. once emitted, the probability for
the electron being recaptured by the emitter can be neglected.
Therefore, the solution of the Schrödinger equation in vacuum
given by equation (21) is to satisfy the radiating boundary
condition [40–42] in the neighbouring vacuum. The condition
requires that the radial component of the current density is
purely outgoing (i.e. strictly positive). The radial component
of the probability current density is defined as [23]:

jr = h̄

m0
Im

(
�∗ ∂�

∂r

)
. (22)

Applying the above definition to the solution of the
Schrödinger equation given by equation (21) and conveniently

rearranging the terms, one finds

j l,m
r (r, θ) = 1

4π2r 2

(
h̄ Fl

4m2
0

)1/3
[
Pl,m(cos θ)

]2

2l + 1

(l + m)!
(l − m)!

× (|al + ibl |2 − |al − ibl|2
)
. (23)

It is now clear that the radial component of the probability
current density vector is purely outgoing when

al = ibl, (24)

leaving only one undetermined coefficient in equation (21). In
order to remove this last indeterminacy one can connect the
solutions of the Schrödinger equation on the CNT manifold to
their 3D counterparts in the vacuum. As the rate of the CNT-to-
vacuum transfer is normally rather small, it will be considered
that the electron wavefunction is concentrated mainly onto the
CNT. The solutions on the CNT are normalized; therefore
a straightforward computation will reveal a vanishing axial
probability current on the CNT. It is now clear that a smooth
connection between the solution on the CNT and the one
in vacuum would have as a result a null probability current
in vacuum and by virtue of equation (1) no field emission
current. This is unrealistic and incorrect. Similar conclusions
have been previously reported in the literature in relation
to the electron transfer from a two-dimensional electron gas
(2DEG) into a continuum [40]. Accurate calculations of
the current were obtained by a simpler requirement of the
continuity of the localization probability density. We adopt in
our study this approach and we modify the continuity condition
in order to adapt it to the dimensionality change between
the two environments of the 2D CNT and the 3D vacuum.
It is therefore assumed that if the electron is essentially
spread on the 2D CNT cap before emission and immediately
after emission will expand into a hemispherical shell whose
thickness is a certain fraction λ (a dimensionless parameter)
of r0. The localization probability of an electron on an
infinitesimal area element dS on the CNT cap before emission
is |�2D

l,m |2 dS and |�3D
l,m |2 dV is the localization probability

in a volume dV in vacuum, immediately outside the surface
of the CNT cap after emission. According to the previous
hypothesis, we have: dV = λr0 dS. By further assuming that
the localization probability is conserved in the transfer from dS
to dV , one may write:

|�2D
l,m(θ, ϕ)2| = λr0|�3D

l,m(r0, θ, ϕ)|2. (25)

Equation (25) relates the initial 2D spread of the electron
on the CNT cap to a 3D volume outside the CNT by a factor
λr0 and thus λ can be viewed as a localization parameter.

Combining equations (24) and (25) we can evaluate
the undetermined constants al and bl in equation (21) as
functions of the localization parameter λ. Thus, the total
probability current carried by �3D

l,m towards the anode can now
be obtained through integration of j l,m

r (r, θ) dS over the CNT’s
hemispherical cap:

Jl,m = 2

λ

(
h̄ Fl

4m2
0

)1/3 α2
l,mr0

π
[
Ai 2(ξl(r0)) + Bi 2 (ξl(r0))

] . (26)

5
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(b)(a)

Figure 3. (a) Field emission current as a function of the anode applied voltage, calculated for three values of the CNT radius. (b) Field
emission current as a function of the CNT radius calculated for three anode voltages. The inset shows the linear scale for the case of 150 V
anode voltage, revealing the pronounced maximum at lower CNT radii.

Using equation (1), the field emission current can now be
obtained from the summation over the contribution of all the
(l, m) states on the CNT to the tunnelling process:

I = e
2r0

πλ

∞∑

l=0

(
h̄ Fl

4m2
0

)1/3 f (El)[
Ai 2 (ξl(r0)) + Bi 2 (ξl(r0))

]

×
l∑

m=−l

α2
l,m . (27)

5. Results and discussion

The theoretical model presented in the previous sections
aim to provide a deeper understanding of the electron field
emission process. The newly introduced framework shifts the
importance of the purely electrostatic argument governing the
Fowler–Nordheim description of field emission from CNTs
onto the electronic structure of the emitter itself and its crucial
role played in the emission process. The results to be presented
in this section analyse the response of the proposed model
with the variation of structural and functional parameters of
the whole emission set-up.

Typical field emission experiments, where single emitters
are exposed to a high electric field by means of a neighbouring
anode, have the experimental data plotted in the common
current versus voltage (I –V ) characteristics. Figure 3(a) shows
the calculated field emission current for three CNTs of radii 2,
10 and 20 nm respectively using equation (27). As is can be
seen in figure 3(a), our model predicts the rapid increase of
the output current for smaller tube diameters, which is due to
the increase of the extraction force. Such an increase can be
explained as the extraction force in equation (9) is inversely
proportional with the radius of the CNT r0, thus resulting
in a thinner potential barrier and therefore a higher emission
current.

An important feature of FE from CNTs that cannot be
systematically analysed experimentally is the variation of the
FE current with the radius of the emitter. The FE formula
given by equation (27) allows one to consider a continuous

range of radii, within the experimentally plausible values for
CNTs, and to study such a variation for different values of the
applied voltage. Figure 3(b) shows the current versus radius
dependence for three values of the applied anode voltage. As it
can be seen, the model predicts the increase of the FE current
as the anode voltage is increased for the same radius of the
emitter. However the model also reveals a hidden aspect of
emission specific to CNTs: the appearance of high frequency
oscillations of the current, the magnitude of which increases
for smaller diameter values (see inset of figure 3(b)). The
existence of such a maximum is explained by the balance
between two opposite effects induced by the decrease of the
CNT radius: the extraction force in equation (9) increase as the
CNT radius decreases which will increase the emission current
and the lowering of the electron density on the CNT cap, which
will tend to decrease the emitted current. The oscillations in
figure 3(b) are consequences of the constraints imposed by the
connection conditions at the boundary between the cylindrical
body of the CNT and the spherical cap.

A practically important discussion of the model’s response
would be the study of the influence of the CNT tip to anode
separation on the FE current. Such experiments have already
been performed previously [43–49], in various arrangements
and for a wide range of separation distances. Our model
allows for consideration of a continuous range of tip to
anode separations and the study of the FE process for the
more delicate situations where the magnitude of the barrier is
affected by the position of the anode itself. Figure 4 shows such
a study where the FE current was plotted against the CNT tip-
to-anode distance for three applied voltages. As it can be seen,
there is a strong dependence of the current when the separation
is smaller than 100 nm and then the current is stabilized for
the rest of the range. This trend is to be expected as the anode
strongly influences the vacuum barrier at the tip of the CNT
when it is brought into the close neighbourhood, a fact that is
in good agreement with a number of experiments [43, 44].

The FE formula presented in equation (27) allows one to
study various scenarios involving the geometrical parameters
discussed above. However, the model also includes parameters
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Figure 4. Field emission current as a function of the CNT tip to
anode separation calculated for three applied voltages.

related to the electronic behaviour of the CNT–vacuum
interface. These are the vacuum barrier height χ and
the localization parameter λ. The influence of these two
parameters on the FE current is illustrated in figures 5(a)
and (b). The electron emission process occurs when the value
of the local extraction field is comparable to the electron
bonding fields in atoms. It is thus expected a major change
in the vacuum barrier height when strong fields are applied
to the CNT–vacuum interface [50], or when other physical
conditions at the interface change. To consider such situations,
it is useful to assume the vacuum barrier height, χ , as an
adjustable parameter. Figure 5(a) shows the emitted current
as a function of χ for three values of the applied anode
voltage. For all three cases, a strong decrease of the FE current
can be observed as the vacuum barrier height is increased.
This expected behaviour is clearly related to the decrease in
transparency for thicker vacuum barriers. The dependence
of the FE current on the localization parameter λ is depicted
in figure 5(b) for three values of the applied anode voltage.
As shown in section 4, the localization parameter quantifies

the spread of the just emitted electron in the neighbouring
vacuum as compared to its localization on the CNT cap. This
is an important result, as it shows the decrease of the FE
current when the localization of the emitted electrons is lower
(or the delocalization is higher). A lower λ value means a
higher localization of the just emitted electron into the vacuum,
therefore a lower spread along its way toward the anode. This
would therefore lead to a higher current density. On the other
hand a larger value for λ would imply a broader spread of the
just emitted electron into the vacuum and a smaller value of
the current density. The results shown in figure 5(b) confirm
the model’s expectations and show a sharp decrease of the
FE current for the high-localization range and a saturation
tendency towards low-localization regime.

The studies presented so far are entirely qualitative in
order to show how the proposed FE model is influenced by
the geometrical and electronic parameters characteristic to the
system studied. However, if real experimental FE data are
available, the model can be used to fit such data. Smith et al
have performed an elaborate FE experiment from a single CNT,
using a nano-manipulation system inside a scanning electron
microscope (SEM) chamber. The full details of the experiment
can be found in [45]. In figure 6 the FE model presented
here was used to fit the experimental data in [45]. The main
parameters used for the fit were the vacuum barrier height
χ and the localization parameter λ. In figure 5(a) it was
shown that the vacuum barrier height strongly influences the
FE current for different values of the applied anode voltage.
The available experimental data were collected for different
CNT tip to anode separations, thus different values of the
applied voltages were applied each time in order to obtain
the maximum current of 1 μA set as a limit during the
experiment to protect the sample. For this reason, different
best-fit values of the vacuum barrier height χ were obtained
for each separation. Best-fit values for both parameters are
summarized in the table attached to figure 6. A decreasing
tendency of χ with decreasing d is observed, which looks
normal for the present theoretical context and may be related
qualitatively to previous independent predictions [36]. On
the contrary, the variation of the localization parameter λ,

(b)(a)

Figure 5. (a) Field emission current as a function of the vacuum barrier height χ calculated for three values of the applied voltage. (b) Field
emission current as a function of the localization parameter λ calculated for three values of the applied voltage.
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Figure 6. Experimental field emission data (scattered symbols) fitted
with the proposed model (continuous lines). The values for the
best-fit parameters are shown in the attached table. The anode radius
was Ra = 5 μm and a common value of 3.033 eV has been used for
W0.

which acts as a scaling factor for the overall fit, shows a quite
erratic aspect that could be linked to the inherent experimental
noise. Although this might suggest that a constant value
for λ should be expected, only using data from improved
experimental techniques may draw a definite conclusion. The
value of the parameter W0 has been tuned such that the work
function obtained from fitting the experimental data taken at
a large CNT-anode separation is in a normal range for CNTs
(around 5 eV). It turned out that the best fit was possible only
for large values of W0, suggesting that the CNT behaviour
resembles that of a metallic needle. We have therefore set
this parameter to the value of 3.033 eV, corresponding to
the nearest neighbour transfer integral for a 1D chain of
carbon atoms in polyethylene [51]. While in the literature
there are computations that place the Fermi level below the
‘conduction band minimum’ [52], previous studies indicate
both theoretically [53, 54] and experimentally [55, 56] that
there are plenty of circumstances when CNTs behave as
metallic conductors.

Another investigation technique, specific for materials
with field emission properties, is the measurement of the
emitted electron energy distribution spectrum or EEED. The
usual trend of these spectra for bulk materials is a continuous
curve with a pronounced peak about the Fermi level (provided
that the origin for the energy scale was set at the Fermi level).
At 0 K the entire emission takes place from below the Fermi
level as electrons cannot populate the energy states above.
Thus the EEED spectra will be entirely confined below the
Fermi level. At higher temperatures the electrons will be able
to populate higher energy states due to thermal excitation and
the EEED will show a tail above the Fermi level. However,
as the emissive materials are shrunk down to the nano-scale
the quantization of the electron inside a nano-sized particle or
object will greatly influence the shape of these spectra. Recent
EEED experiments performed by Lobanov and Sheshin on
sharp CNTs [15] revealed a fine structure embedded in the
spectrum. This peculiar behaviour of the CNTs was attributed
to the competition between the availability of allowed energy
states on the CNT cap and their statistical occupancy. Instead

Figure 7. The emitted electron energy distribution (EEED) spectra
calculated for three values of the CNT radius r0.

of a continuous spectrum as obtained from a bulk metal,
where all the energy levels are occupied up to the Fermi level,
the CNTs appear to have forbidden energy states which are
unoccupied by electrons thus generating the fine structure in
the EEED [15]. A similar fine structure in the EEED can be
obtained in the presented model. A study of the influence of the
CNT radius r0 and length L on the EEED spectrum is presented
in figure 7. While not being a quantitative study, the fine
structure is clearly exemplified in this figure for three different
radii. The change in radius of the CNT dramatically influences
the fine structure and the overall magnitude of the spectrum
as the density of the energy levels given by equation (14) is
inversely proportional to the square of the CNT radius. Thus,
the smaller the radius the closer to the Fermi level the energy
levels given by equation (14) will be and the more intense will
be their participation to the emission process (provided that the
energy state is allowed by the quantization rules [21]). For a
larger CNT radius, the energy levels will be further away from
the Fermi level thus having a considerably lower probability to
participate in the emission process.

6. Conclusion

A new description of electron emission has been proposed
by direct calculation of the solution of the 2D Schrödinger
equation on the CNT surface and a 3D solution in vacuum
in which a weak connection condition is used to account
for the change in dimension between the 2D surface of the
CNT and the 3D vacuum. The probability current was
calculated at the surface of the CNT and by assuming a
Fermi–Dirac electron statistics on the CNT, the field emission
current was calculated as a sum over all energies from the
product between the electron charge, the electron statistics
and the probability current. The proposed model was then
investigated in a series of studies in order to test the influences
of the various geometrical and electronic parameter used
throughout on the FE current. The results were discussed and
qualitatively compared with known experimental conclusions
already existent in the literature. It was shown that the model
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is able to qualitatively replicate a large number of experimental
results and, if FE experimental data are available, it can be used
to fit the obtained data.
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